Nghĩ ra ý tưởng cho AI là một công việc thú vị, nhưng thử nghiệm những ý tưởng đó là một công việc mang tính "tay chân". Và các công việc "tay chân" thì nên để cho AI đảmn hiệm.
- Bạn có tin chiếc váy cực kỳ lộng lẫy và đẹp mắt này lại là tác phẩm của trí tuệ nhân tạo?
- Trí tuệ nhân tạo sẽ thảm bại trước con người trong StarCraft vì chúng không biết nói dối
Song, với tất cả những thành tựu do AI mang tới, ít ai biết những gã khổng lồ Internet đã xây dựng các cỗ máy trí thông minh nhân tạo như thế nào.
Thành phần quan trọng đầu tiên trong công thức của Google và Facebook là bỏ ra một đống tiền để chiêu mộ những người có đầu óc siêu phàm. Chỉ có khoảng vài trăm người trong số 7 tỷ người sống trên Trái đất có đủ tài năng và được giáo dục đầy đủ để đưa AI tiến về phía trước, do đó những người này sẽ được săn đón và trả lương hậu hĩnh như các siêu sao bóng đá.
Demis Hassabis, nhà sáng lập của DeepMind, công ty sau này đã được Google mua lại để tạo ra bộ AI đầu tiên đánh bại con người trên bàn cờ vây khẳng định: "Vai trò của chúng tôi giống như là huấn luyện viên thay vì làm cầu thủ. Bạn đang đào tạo cho các AI này thay vì yêu cầu trực tiếp chúng làm gì đó".
Đến bây giờ, nhiều công ty lại cố gắng tự động hóa khâu thử nghiệm và mắc sai lầm của AI (hoặc ít nhất là một phần trong đó). Nếu như bạn có thể tự động hóa các phần khó nhằn nhất, bạn có thể đẩy nhanh thời gian đưa công nghệ máy học tới các kỹ sư bình thường, và rồi bạn có thể để các nhà khoa học hàng đầu của mình dành trí óc suy nghĩ về những vấn đề có tầm vóc to lớn hơn nữa. Điều này sẽ giúp tăng đáng kể tốc độ tiến hóa của "trí thông minh" bên trong các dịch vụ Internet đang được sử dụng hàng ngày.
Mô hình của Facebook vẫn sẽ mất nhiều thời gian để trở nên hoàn thiện. Nhưng mục đích là hết sức rõ ràng: giảm tối đa các khâu thử nghiệm nhàm chán cho con người trong quá trình chế tạo AI.
Chế tạo và thử nghiệm
Sau màn lên sàn kỷ lục với trị giá 104 tỷ USD của Facebook vào năm 2012, Hussein Mehanna và nhiều kỹ sư tài năng của Facebook bắt đầu cảm thấy áp lực phải cải thiện khả năng xác định đối tượng quảng cáo. Mạng xã hội này sống nhờ quảng cáo: càng hiển thị các mẩu quảng cáo phù hợp với sở thích người dùng thì Facebook càng thu được nhiều tiền. Điều này cũng có nghĩa rằng các kỹ sư cần phải tạo ra các mạng nơ-ron sâu và các thuật toán máy học có thể xử lý hiệu quả lượng thông tin cá nhân khổng lồ mà Facebook thu lại hàng ngày từ 1,5 tỷ người dùng của mình.
Nền tảng FBLearner Flow được Facebook công bố rộng rãi.
Nếu Flow thành công, các kỹ sư của Facebook có thể dễ dàng thử nghiệm vô số ý tưởng trên hệ thống trung tâm dữ liệu của Facebook. Họ có thể chạy vô số các loại thuật toán, không chỉ gồm học sâu mà còn cả các loại AI như hồi quy logistic hay cây quyết định tăng cường. Kết quả từ các thuật toán này có thể được sử dụng để phát triển các ý tưởng mới. “Bạn càng thử nghiệm nhiều ý tưởng càng tốt. Bạn càng thử nghiệm nhiều dữ liệu càng tốt”, Mehanna khẳng định. Các kỹ sư cũng có thể sử dụng lại các thuật toán do người khác tạo ra, thay đổi chúng cho phù hợp với tác vụ của mình.
Facebook cũng đã nhanh chóng mở rộng Flow trên phạm vi toàn bộ công ty. Với các đội ngũ phát triển khác của Facebook, công cụ này có thể được sử dụng để lựa chọn các đường dẫn hiển thị lên News Feed của bạn, nhận diện khuôn mặt trong các bức ảnh hay thậm chí là mô tả nội dung ảnh bằng giọng nói cho người mù. Cũng bằng thuật toán, Facebook có thể quyết định triển khai kết nối Internet tại vùng nào trên toàn cầu.
Nhờ có Flow, Facebook hiện đang “đào tạo” và thử nghiệm 300.000 mô hình máy học mỗi tháng. Trong khi trước đây mạng xã hội này phải mất 60 ngày để ra mắt một mô hình thuật toán mới tới người dùng, khoảng thời gian này đã được rút xuống còn 7 ngày.
Giới hạn tiếp theo
Mehanna và Facebook muốn đẩy nhanh tốc độ của trào lưu mới. Mạng xã hội số 1 hành tinh hiện đang lên kế hoạch đưa Flow thành mã nguồn mở, chia sẻ với toàn bộ thế giới. Theo Mehanna, hiện tại LinkedIn, Uber và Twitter đều đã bày tỏ sự hứng thú với Flow. Đội ngũ Facebook hiện cũng đã xây dựng một công cụ có tên AutoML cho phép tiết kiệm hơn nữa công sức của các nhà nghiên cứu. chạy trên nền tảng Flow, AutoML có thể “làm sạch” dữ liệu cần thiết để đào tạo các mạng nơ-ron sâu và các thuật toán máy học khác, hay nói cách khác là chuẩn bị cho khâu kiểm thử các thuật toán mà không đòi hỏi bàn tay của con người. Nhà nghiên cứu của Facebook thậm chí còn vẽ ra kịch bản sử dụng thuật toán có thể tự thu thập dữ liệu để đưa vào phân tích. Ý nghĩa của AutoML là vô cùng to lớn: đây là công cụ sử dụng AI để tạo ra AI.
Như đã hé lộ, số lượng mô hình AI được Facebook kiểm thử hàng tháng lên tới 300.000. AutoML có thể dùng kết quả của các thử nghiệm này nhằm đào tạo các mô hình AI có khả năng tối ưu quá trình “đào tạo” các AI mới. Phương hướng phát triển AI mang đậm màu sắc Inception này hiện đang hoạt động rất tốt tại Facebook khi hệ thống của Mehanna có thể tự động chọn các thuật toán và các tham số có khả năng thành công. “Nó gần như dự đoán được kết quả trước khi nghiên cứu vậy”, Mehanna cho biết.
Đằng sau thứ tự hiển thị của News Feed quen thuộc là cả một bộ não "ảo" khổng lồ.
Đây là một ý tưởng cực kỳ thú vị, một ý tưởng từ trước tới nay mới chỉ xuất hiện trong văn học và phim ảnh. Dĩ nhiên, đây sẽ là một bước tiến đến gần hơn kịch bản máy móc hủy diệt con người. Nhưng ít ra một vài kỹ sư tại Facebook sẽ không còn mất thời gian để thử nghiệm hàng trăm nghìn mô hình AI mỗi tháng nữa.
No comments:
Post a Comment